

Universidade Federal de Santa Catarina Centro Tecnológico Departamento de Informática e Estatística

Programa de Ensino

1) Identificação

Disciplina: INE5420 - Computação Gráfica

Carga horária: 72 horas-aula Teóricas: 36 Práticas: 36

Período: 2º semestre de 2012 até a presente data

2) Cursos

- Ciências da Computação (208)

- Matemática, Habilitação Bacharelado (222)

3) Requisitos

- Ciências da Computação (208)
 - INE5408 Estruturas de Dados
 - MTM3120 Cálculo 2
 - MTM3121 Álgebra Linear
- Matemática, Habilitação Bacharelado (222)
 - INE5408 Estruturas de Dados
 - MTM3422 Álgebra Linear II

4) Ementa

Computação Gráfica Básica. Sistema Gráfico Interativo. Transformações geométricas 2D e coordenadas homogêneas. Clipping. Curvas paramétricas em 2D e 3D. Estruturas de dados gráficas 3D. Navegação 3D. Projeções, perspectiva e clipping 3D. Superfícies paramétricas bicúbicas. Visualização em 3D contendo, Rayshading, Raycasting e Raytracing. Conversão por varredura e buffer de profundidade. Iluminação de objetos. Implementação de um rayshader. APIs Gráficas e OpenGL. Animação e utilização de modelos hierárquicos. Simulação de movimentação de animais e humanos. Realidade virtual e VRML.

5) Objetivos

Geral: Desenvolver os aspectos teórico-praticos da disciplina, com desenvolvimento em laboratório de sistemas gráficos composta de 4 módulos: Módulo I - Computação Gráfica Básica com Implementação de um Sistema Gráfico Interativo. Módulo II: Visualização Realística em 3D. Módulo III - APIs Gráficas Utilizadas Comercialmente. Módulo IV: Aplicações Avançadas e Assuntos Especiais. Objetiva passar ao aluno tanto conhecimentos matemáticos e técnicos fundados sobre as técnicas e preceitos teóricos da Computação Gráfica, quanto prover uma experiência prática no desenvolvimento de sistemas gráficos envolvendo estes conceitos.

Específicos:

- Compreender e Implementar Visualização Realística em 3D contendo: introdução a Rayshading, Raycasting e Raytracing; conversão por varredura; o buffer de profundidade; modelagem da iluminação de objetos; principais raytracers; implementação de um rayshader.
- Utilizar na prática de APIs Gráficas contendo: introdução a OpenGL; sólidos em OpenGL; operações geométricas em OpenGL; modelos de arame e facetas em 3D; normais e efeitos de Iluminação com OpenGL; Java3D e outras APIs.
- Desenvolver a Aplicações Avançadas contendo: animação e utilização de modelos hierárquicos; simulação de movimentação de animais e humanos e simulação de sistemas de

6) Conteúdo Programático

- 6.1) Introdução à CG, aplicações e conseqüências [2 horas-aula]
- 6.2) Conceitos Básicos de Computação Gráfica[2 horas-aula]
- 6.3) Coordenadas 2D [8 horas-aula]
 - Princípios de Transformações 2D e Coordenadas Homogêneas
 - Implementação de Transformações 2D e Coordenadas Homogêneas
 - Sistema de Coordenadas da Window
 - Clipping 2D
- 6.4) Curvas [6 horas-aula]
 - Métodos analíticos: Blending Functions
 - Métodos iterativos: Forward Differences
- 6.5) Computação Gráfica 3D [8 horas-aula]
 - Princípios de Projeções
 - Projeções Paralelas
 - Transformações 3D
- 6.6) Perspectiva [6 horas-aula]
 - Projeção em Perspectiva
 - Clipping 3D
- 6.7) Superfícies Curvas [4 horas-aula]
 - Superfícies Curvas Bicúbicas em 3D
 - Métodos analíticos para Superfícies Curvas Bicúbicas em 3D
 - Métodos iterativos para Superfícies Curvas Bicúbicas em 3D
- 6.8) Teoria da Iluminação [8 horas-aula]
 - Raytracing, Raycasting, Rayshading
 - Buffer de Profundidade
 - Conversão por Varredura
 - Modelagem de Iluminação de Ambientes e Objetos
- 6.9) Implementação de Iluminação [4 horas-aula]
 - Pixel Shading: fundamentos matemáticos e algoritmos
 - Pixel Shading: implementação em CPU e GPU
- 6.10) Ferramentas de Visualização Realística [4 horas-aula]
 - Raytracing com ferramentas open-source como POV-Ray
 - Modeladores 3D para Raytracing como Moray
 - Linguagens de descrição de cenas
- 6.11) Modelos de Interação de Fontes de Luz [4 horas-aula]
 - Radiância: conceitos e modelos matemáticos
 - Radiância: ferramentas e aplicações
- 6.12) APIs Gráficas [6 horas-aula]
 - OpenGL
 - Java3D e outras APIs
- 6.13) Modelos Hierárquicos[4 horas-aula]
 - Princípios Básicos
 - Modelando movimentos articulados
- 6.14) Carga horária reservada para o processo de avaliação [6 horas-aula]
 - Defesas dos Trabalhos
 - Auxílio para trabalhos de recuperação
 - Recuperação

7) Bibliografia Básica

- Fundamentals of Interactive Computer Graphics. ANGEL, EDWARD, DAM, A., VAN, FEINER, S., FOLEY, JAMES D. ADDISON WESLEY (PEARSON), 1995, 2a. Edição.
- Computação Gráfica Teoria e Prática. Conci, Aura; Azevedo, Eduardo. Editora CAMPUS, 2003.
- Computação Gráfica Teoria e Prática Vol. 2 Conci, Aura; Leta, Fabiana; Azevedo, Eduardo / CAMPUS, 2007.
- Material online disponibilizado no site da disciplina.

8) Bibliografia Complementar

- Principles of Interactive Computer Graphics. Williem Newman & Robert Sproull.
 McGraw-Hill/Kogakusha
- Interactive Computer Graphics. McGraw-Hill (Livro verde)
- Computer Graphics, C Version, Second Edition by Donald Hearn and M. Pauline Baker, Prentice-Hall, ISBN: 0135309247.
- The OpenGL Super Bible. 2nd. Edition.
- "OpenGL 1.2 Programming Guide, Third Edition: The Official Guide to Learning OpenGL, Version 1.2" by Mason Woo, Jackie Neider, Tom Davis, Dave Shreiner, OpenGL Architecture Review Board, Addison-Wesley Pub Co; ISBN: 0201604582
- "OpenGL Reference Manual: The Official Reference Document to OpenGL, Version 1.2" by Dave Shreiner (Editor), Opengl Architecture Review Board, Addison-Wesley Pub Co; ISBN: 0201657651